Séminaire de géométrie - Salle de conférences du CMLS - 10h
18 juin. 2025
10h-12h – Soham Karwa (Université Duke)
« Non-archimedean periods for log Calabi-Yau surfaces»
Résumé : Period integrals are a fundamental concept in algebraic geometry and number theory. In this talk, we will study the notion of non-archimedean periods as introduced by Kontsevich and Soibelman. We will give an overview of the non-archimedean SYZ program, which is a close analogue of the classical SYZ conjecture in mirror symmetry. Using the non-archimedean SYZ fibration, we will see how non-archimedean periods recover the complex analytic periods for log Calabi-Yau surfaces, proving the first instance of a conjecture of Kontsevich and Soibelman. This is joint work with Jonathan Lai.
Prochaines séances :
- 25 juin, Sebastien Alvarez, CMAT, Montevideo, Uruguay
- 2 juillet, Michele Ancona, Université Côte d'Azur et Adrien Kassel, ENS Lyon